Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Gene ; : 148495, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663690

RESUMO

DEAD-box RNA helicases, a prominent subfamily within the RNA helicase superfamily 2 (SF2), play crucial roles in the growth, development, and abiotic stress responses of plants. This study identifies 146 DEAD-box RNA helicase genes (GhDEADs) and categorizes them into four Clades (Clade A-D) through phylogenetic analysis. Promoter analysis reveals cis-acting elements linked to plant responses to light, methyl jasmonate (MeJA), abscisic acid (ABA), low temperature, and drought. RNA-seq data demonstrate that Clade C GhDEADs exhibit elevated and ubiquitous expression across different tissues, validating their connection to leaf development through real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Notably, over half of GhDEADs display up-regulation in the leaves of virus-induced gene silencing (VIGS) plants of GhVIR-A/D (members of m6A methyltransferase complex, which regulate leaf morphogenesis). In conclusion, this study offers a comprehensive insight into GhDEADs, emphasizing their potential involvement in leaf development.

2.
BMC Plant Biol ; 24(1): 322, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654173

RESUMO

BACKGROUND: PIN-FORMED genes (PINs) are crucial in plant development as they determine the directionality of auxin flow. They are present in almost all land plants and even in green algae. However, their role in fern development has not yet been determined. This study aims to investigate the function of CrPINMa in the quasi-model water fern Ceratopteris richardii. RESULTS: CrPINMa possessed a long central hydrophilic loop and characteristic motifs within it, which indicated that it belonged to the canonical rather than the non-canonical PINs. CrPINMa was positioned in the lineage leading to Arabidopsis PIN6 but not that to its PIN1, and it had undergone numerous gene duplications. CRISPR/Cas9 genome editing had been performed in ferns for the first time, producing diverse mutations including local frameshifts for CrPINMa. Plants possessing disrupted CrPINMa exhibited retarded leaf emergence and reduced leaf size though they could survive and reproduce at the same time. CrPINMa transcripts were distributed in the shoot apical meristem, leaf primordia and their vasculature. Finally, CrPINMa proteins were localized to the plasma membrane rather than other cell parts. CONCLUSIONS: CRISPR/Cas9 genome editing is feasible in ferns, and that PINs can play a role in fern leaf development.


Assuntos
Sistemas CRISPR-Cas , Folhas de Planta , Proteínas de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Edição de Genes , Pteridaceae/genética , Pteridaceae/metabolismo , Pteridaceae/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Gleiquênias/genética , Gleiquênias/crescimento & desenvolvimento , Gleiquênias/metabolismo
3.
Plant Cell Physiol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590036

RESUMO

Endoplasmic reticulum (ER)-derived organelles, ER bodies, participate in the defense against herbivores in Brassicaceae plants. ER bodies accumulate ß-glucosidases, which hydrolyse specialized thioglucosides known as glucosinolates to generate bioactive substances. In Arabidopsis thaliana, the leaf ER (LER) bodies are formed in large pavement cells, which are found in the petioles, margins, and blades of rosette leaves. However, the regulatory mechanisms involved in establishing large pavement cells are unknown. Here, we show that the ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) transcription factor regulates the formation of LER bodies in large pavement cells of rosette leaves. Overexpression of ATML1 enhanced the expression of LER body-related genes and the number of LER body-containing large pavement cells, whereas its knockout resulted in opposite effects. ATML1 enhances endoreduplication and cell size through LOSS OF GIANT CELLS FROM ORGANS (LGO). Although the overexpression and knockout of LGO affected the appearance of large pavement cells in Arabidopsis, the effect on LER body-related gene expression and LER body formation was weak. LER body-containing large pavement cells were also found in Eutrema salsugineum, another Brassicaceae species. Our results demonstrate that ATML1 establishes large pavement cells to induce LER body formation in Brassicaceae plants, and thereby possibly contributes to the defense against herbivores.

4.
J Plant Res ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592658

RESUMO

Leaf form can vary at different levels, such as inter/intraspecies, and diverse leaf shapes reflect their remarkable ability to adapt to various environmental conditions. Over the past two decades, considerable progress has been made in unraveling the molecular mechanisms underlying leaf form diversity, particularly the regulatory mechanisms of leaf complexity. However, the mechanisms identified thus far are only part of the entire process, and numerous questions remain unanswered. This review aims to provide an overview of the current understanding of the molecular mechanisms driving leaf form diversity while highlighting the existing gaps in our knowledge. By focusing on the unanswered questions, this review aims to shed light on areas that require further research, ultimately fostering a more comprehensive understanding of leaf form diversity.

5.
FEBS Lett ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605280

RESUMO

Evolutionarily conserved protein associated with topoisomerase II (PAT1) proteins activate mRNA decay through binding mRNA and recruiting decapping factors to optimize posttranscriptional reprogramming. Here, we generated multiple mutants of pat1, pat1 homolog 1 (path1), and pat1 homolog 2 (path2) and discovered that pat triple mutants exhibit extremely stunted growth and all mutants with pat1 exhibit leaf serration while mutants with pat1 and path1 display short petioles. All three PATs can be found localized to processing bodies and all PATs can target ASYMMETRIC LEAVES 2-LIKE 9 transcripts for decay to finely regulate apical hook and lateral root development. In conclusion, PATs exhibit both specific and redundant functions during different plant growth stages and our observations underpin the selective regulation of the mRNA decay machinery for proper development.

6.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592944

RESUMO

Rice leaf morphology is a pivotal component of the ideal plant architecture, significantly impacting rice yield. The process of leaf development unfolds through three distinct stages: the initiation of leaf primordia, the establishment and maintenance of polarity, and leaf expansion. Genes regulating leaf morphology encompass transcription factors, hormones, and miRNAs. An in-depth synthesis and categorization of genes associated with leaf development, particularly those successfully cloned, hold paramount importance in unraveling the complexity of rice leaf development. Furthermore, it provides valuable insights into the potential for molecular-level manipulation of rice leaf types. This comprehensive review consolidates the stages of rice leaf development, the genes involved, molecular regulatory pathways, and the influence of plant hormones. Its objective is to establish a foundational understanding of the creation of ideal rice leaf forms and their practical application in molecular breeding.

7.
Genes (Basel) ; 15(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540394

RESUMO

Magnolia kwangsiensis, a dioecious tree native to China, is recognized not only for its status as an at-risk species but also for its potential in therapeutic applications courtesy of its bioactive compounds. However, the genetic underpinnings of its leaf development and compound biosynthesis are not well documented. Our study aims to bridge this knowledge gap through comparative transcriptomics, analyzing gene expression through different leaf maturation stages. We studied the transcriptome of M. kwangsiensis leaves by applying RNA sequencing at juvenile, tender, and mature phases. We identified differentially expressed genes (DEGs) to explore transcriptional changes accompanying the developmental trajectory. Our analysis delineates the transcriptional landscape of over 20,000 genes with over 6000 DEGs highlighting significant transcriptional shifts throughout leaf maturation. Mature leaves demonstrated upregulation in pathways related to photosynthesis, cell wall formation, and polysaccharide production, affirming their structural integrity and specialized metabolic functions. Our GO and KEGG enrichment analyses underpin these findings. Furthermore, we unveiled coordinated gene activity correlating development with synthesizing therapeutically relevant polysaccharides. We identified four novel glycosyltransferases potentially pivotal in this synergistic mechanism. Our study uncovers the complementary evolutionary forces that concurrently sculpt structural and chemical defenses. These genetic mechanisms calibrate leaf tissue resilience and biochemical efficacy.


Assuntos
Magnolia , Magnolia/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Folhas de Planta/genética , Folhas de Planta/química , Análise de Sequência de RNA
8.
Curr Biol ; 34(8): 1670-1686.e10, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38531358

RESUMO

Grass leaves are invariantly strap shaped with an elongated distal blade and a proximal sheath that wraps around the stem. Underpinning this shape is a scaffold of leaf veins, most of which extend in parallel along the proximo-distal leaf axis. Differences between species are apparent both in the vein types that develop and in the distance between veins across the medio-lateral leaf axis. A prominent engineering goal is to increase vein density in leaves of C3 photosynthesizing species to facilitate the introduction of the more efficient C4 pathway. Here, we discover that the WIP6 transcription factor TOO MANY LATERALS (TML) specifies vein rank in both maize (C4) and rice (C3). Loss-of-function tml mutations cause large lateral veins to develop in positions normally occupied by smaller intermediate veins, and TML transcript localization in wild-type leaves is consistent with a role in suppressing lateral vein development in procambial cells that form intermediate veins. Attempts to manipulate TML function in rice were unsuccessful because transgene expression was silenced, suggesting that precise TML expression is essential for shoot viability. This finding may reflect the need to prevent the inappropriate activation of downstream targets or, given that transcriptome analysis revealed altered cytokinin and auxin signaling profiles in maize tml mutants, the need to prevent local or general hormonal imbalances. Importantly, rice tml mutants display an increased occupancy of veins in the leaf, providing a step toward an anatomical chassis for C4 engineering. Collectively, a conserved mechanism of vein rank specification in grass leaves has been revealed.


Assuntos
Oryza , Folhas de Planta , Proteínas de Plantas , Fatores de Transcrição , Zea mays , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas
9.
Int J Biol Macromol ; 263(Pt 2): 130471, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417753

RESUMO

Plant AT-rich sequence and zinc-binding (PLATZ) proteins are a class of plant-specific transcription factor that play a crucial role in plant growth, development, and stress response. However, the evolutionary relationship of the PLATZ gene family across the Populus genus and the biological functions of the PLATZ protein require further investigation. In this study, we identified 133 PLATZ genes from six Populus species belonging to four Populus sections. Synteny analysis of the PLATZ gene family indicated that whole genome duplication events contributed to the expansion of the PLATZ family. Among the nine paralogous pairs, the protein structure of PtrPLATZ14/18 pair exhibited significant differences with others. Through gene expression patterns and co-expression networks, we discovered divergent expression patterns and sub-networks, and found that the members of pair PtrPLATZ14/18 might play different roles in the regulation of macromolecule biosynthesis and modification. Furthermore, we found that PtrPLATZ14 regulates poplar leaf development by affecting cell size control genes PtrGRF/GIF and PtrTCP. In conclusion, our study provides a theoretical foundation for exploring the evolution relationships and functions of the PLATZ gene family within Populus species and provides insights into the function and potential mechanism of PtrPLATZ14 in leaf morphology that were diverse across the Populus genus.


Assuntos
Populus , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Família Multigênica , Filogenia , Populus/genética , Populus/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química
10.
New Phytol ; 242(3): 1113-1130, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38418427

RESUMO

Leaf development is a multifaceted and dynamic process orchestrated by a myriad of genes to shape the proper size and morphology. The dynamic genetic network underlying leaf development remains largely unknown. Utilizing a synergistic genetic approach encompassing dynamic genome-wide association study (GWAS), time-ordered gene co-expression network (TO-GCN) analyses and gene manipulation, we explored the temporal genetic architecture and regulatory network governing leaf development in Populus. We identified 42 time-specific and 18 consecutive genes that displayed different patterns of expression at various time points. We then constructed eight TO-GCNs that covered the cell proliferation, transition, and cell expansion stages of leaf development. Integrating GWAS and TO-GCN, we postulated the functions of 27 causative genes for GWAS and identified PtoGRF9 as a key player in leaf development. Genetic manipulation via overexpression and suppression of PtoGRF9 revealed its primary influence on leaf development by modulating cell proliferation. Furthermore, we elucidated that PtoGRF9 governs leaf development by activating PtoHB21 during the cell proliferation stage and attenuating PtoLD during the transition stage. Our study provides insights into the dynamic genetic underpinnings of leaf development and understanding the regulatory mechanism of PtoGRF9 in this dynamic process.


Assuntos
Estudo de Associação Genômica Ampla , Populus , Folhas de Planta/anatomia & histologia , Redes Reguladoras de Genes , Regulação da Expressão Gênica de Plantas
11.
Noncoding RNA ; 10(1)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38392968

RESUMO

Plant species utilize a variety of regulatory mechanisms to ensure sustainable productivity. Within this intricate framework, numerous non-coding RNAs (ncRNAs) play a crucial regulatory role in plant biology, surpassing the essential functions of RNA molecules as messengers, ribosomal, and transfer RNAs. ncRNAs represent an emerging class of regulators, operating directly in the form of small interfering RNAs (siRNAs), microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). These ncRNAs exert control at various levels, including transcription, post-transcription, translation, and epigenetic. Furthermore, they interact with each other, contributing to a variety of biological processes and mechanisms associated with stress resilience. This review primarily concentrates on the recent advancements in plant ncRNAs, delineating their functions in growth and development across various organs such as root, leaf, seed/endosperm, and seed nutrient development. Additionally, this review broadens its scope by examining the role of ncRNAs in response to environmental stresses such as drought, salt, flood, heat, and cold in plants. This compilation offers updated information and insights to guide the characterization of the potential functions of ncRNAs in plant growth, development, and stress resilience in future research.

12.
Mol Genet Genomics ; 299(1): 13, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396305

RESUMO

Gamma (γ)-ray irradiation is one of the important modern breeding methods. Gamma-ray irradiation can affect the growth rate and other characteristics of plants. Plant growth rate is crucial for plants. In horticultural crops, the growth rate of plants is closely related to the growth of leaves and flowering time, both of which have important ornamental value. In this study, 60Co-γ-ray was used to treat P. equestris plants. After irradiation, the plant's leaf growth rate increased, and sugar content and antioxidant enzyme activity increased. Therefore, we used RNA-seq technology to analyze the differential gene expression and pathways of control leaves and irradiated leaves. Through transcriptome analysis, we investigated the reasons for the rapid growth of P. equestris leaves after irradiation. In the analysis, genes related to cell wall relaxation and glucose metabolism showed differential expression. In addition, the expression level of genes encoding ROS scavenging enzyme synthesis regulatory genes increased after irradiation. We identified two genes related to P. equestris leaf growth using VIGS technology: PeNGA and PeEXPA10. The expression of PeEXPA10, a gene related to cell wall expansion, was down-regulated, cell wall expansion ability decreased, cell size decreased, and leaf growth rate slowed down. The TCP-NGATHA (NGA) molecular regulatory module plays a crucial role in cell proliferation. When the expression of the PeNGA gene decreases, the leaf growth rate increases, and the number of cells increases. After irradiation, PeNGA and PeEXPA10 affect the growth of P. equestris leaves by influencing cell proliferation and cell expansion, respectively. In addition, many genes in the plant hormone signaling pathway show differential expression after irradiation, indicating the crucial role of plant hormones in plant leaf growth. This provides a theoretical basis for future research on leaf development and biological breeding.


Assuntos
Orchidaceae , Melhoramento Vegetal , Perfilação da Expressão Gênica , Genes de Plantas , RNA-Seq , Antioxidantes/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Folhas de Planta , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética
13.
J Exp Bot ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38364822

RESUMO

Foliar development involves successive phases of cell proliferation and expansion that determine the final leaf size, and is characterized by an early burst of reactive oxygen species generated in the photosynthetic electron transport chain (PETC). Introduction of the alternative PETC acceptor flavodoxin in tobacco chloroplasts led to a reduction in leaf size associated to lower cell expansion, without affecting cell numbers per leaf. Proteomic analysis showed that components of the light-harvesting systems accumulated before electron-transport proteins, suggesting a mechanism for the early oxidative event. Flavodoxin expression did not affect biogenesis of the PETC but prevented hydroperoxide build-up through its function as electron sink. Mature leaves from flavodoxin-expressing plants were shown to contain higher levels of transcripts encoding components of the proteasome, a key negative modulator of organ size. Proteome profiling revealed that this differential accumulation initiated during expansion and led to increased proteasomal activity, whereas a proteasome inhibitor reverted the flavodoxin-dependent size phenotype. Cells expressing plastid-targeted flavodoxin displayed lower endoreduplication, also associated to decreased organ size. These results provide novel insights into the regulation of leaf growth by chloroplast-generated redox signals, and highlight the potential of alternative electron shuttles to investigate the link(s) between photosynthesis and plant development.

14.
Mol Plant ; 17(3): 377-394, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38243593

RESUMO

Oxygen is essential for plant growth and development. Hypoxia occurs in plants due to limited oxygen availability following adverse environmental conditions as well in hypoxic niches in otherwise normoxic environments. However, the existence and functional integration of spatiotemporal oxygen dynamics with plant development remains unknown. In animal systems dynamic fluctuations in oxygen availability are known as cyclic hypoxia. In this study, we demonstrate that cyclic fluctuations in internal oxygen levels occur in young emerging leaves of Arabidopsis plants. Cyclic hypoxia in plants is based on a mechanism requiring the ETHYLENE RESPONSE FACTORS type VII (ERFVII) that are central components of the oxygen-sensing machinery in plants. The ERFVII-dependent mechanism allows precise adjustment of leaf growth in response to carbon status and oxygen availability within plant cells. This study thus establishes a functional connection between internal spatiotemporal oxygen dynamics and developmental processes of plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Oxigênio/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Hipóxia , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256133

RESUMO

Paeonia ostii 'Feng Dan' is widely cultivated in China for its ornamental, medicinal, and edible properties. The whole plant of tree peony is rich in bioactive substances, while the comprehensive understanding of metabolites in the leaves is limited. In this study, an untargeted metabolomics strategy based on UPLC-ESI-TOF-MS was conducted to analyze the dynamic variations of bioactive metabolites in P. ostii 'Feng Dan' leaves during development. A total of 321 metabolites were rapidly annotated based on the GNPS platform, in-house database, and publications. To accurately quantify the selected metabolites, a targeted method of HPLC-ESI-QQQ-MS was used. Albiflorin, paeoniflorin, pentagalloylglucose, luteolin 7-glucoside, and benzoylpaeoniflorin were recognized as the dominant bioactive compounds with significant content variations during leaf development. Metabolite variations during the development of P. ostii 'Feng Dan' leaves are greatly attributed to the variations in antioxidant activities. Among all tested bacteria, the leaf extract exhibited exceptional inhibitory effects against Streptococcus hemolytis-ß. This research firstly provides new insights into tree peony leaves during development. The stages of S1-S2 may be the most promising harvesting time for potential use in food or pharmaceutical purposes.


Assuntos
Paeonia , China , Bases de Dados Factuais , Alimentos , 60705
16.
Dev Cell ; 59(1): 4-19, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194910

RESUMO

During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.


Assuntos
Axônios , Regeneração , Adulto , Humanos , Fenótipo , Folhas de Planta , Reprodução
17.
J Exp Bot ; 75(1): 180-203, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611210

RESUMO

Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.


Assuntos
Ascomicetos , Hordeum , Ascomicetos/fisiologia , Hordeum/metabolismo , Giberelinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Hormônios/metabolismo , Ciclo Celular
18.
Adv Biol (Weinh) ; 8(1): e2300410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37828417

RESUMO

The peanut is an important worldwide cash-crop for edible oil and protein. However, the kinetic mechanisms that determine gene expression and chromatin accessibility during leaf development in peanut represented allotetraploid leguminous crops are poorly understood at single-cell resolution. Here, a single-nucleus atlas of peanut leaves is developed by simultaneously profiling the transcriptome and chromatin accessibility in the same individual-cell using fluorescence-activated sorted single-nuclei. In total, 5930 cells with 50 890 expressed genes are classified into 18 cell-clusters, and 5315 chromatin fragments are enriched with 26 083 target genes in the chromatin accessible landscape. The developmental trajectory analysis reveals the involvement of the ethylene-AP2 module in leaf cell differentiation, and cell-cycle analysis demonstrated that genome replication featured in distinct cell-types with circadian rhythms transcription factors (TFs). Furthermore, dual-omics illustrates that the fatty acid pathway modulates epidermal-guard cells differentiation and providescritical TFs interaction networks for understanding mesophyll development, and the cytokinin module (LHY/LOG) that regulates vascular growth. Additionally, an AT-hook protein AhAHL11 is identified that promotes leaf area expansion by modulating the auxin content increase. In summary, the simultaneous profiling of transcription and chromatin accessibility landscapes using snRNA/ATAC-seq provides novel biological insights into the dynamic processes of peanut leaf cell development at the cellular level.


Assuntos
Fabaceae , Transcriptoma , Arachis/genética , Arachis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fabaceae/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
19.
Plants (Basel) ; 12(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960023

RESUMO

Xinyang Maojian (XYMJ) tea is one of the world's most popular green teas; the development of new sprouts directly affects the yield and quality of tea products, especially for XYMJ, which has hairy tips. Here, we used transcriptome and small RNA sequencing to identify mRNAs and miRNAs, respectively, involved in regulating leaf development in different plant tissues (bud, leaf, and stem). We identified a total of 381 conserved miRNAs. Given that no genomic data for XYMJ green tea are available, we compared the sequencing data for XYMJ green tea with genomic data from a closely related species (Tieguanyin) and the Camellia sinensis var. sinensis database; we identified a total of 506 and 485 novel miRNAs, respectively. We also identified 11 sequence-identical novel miRNAs in the tissues of XYMJ tea plants. Correlation analyses revealed 97 miRNA-mRNA pairs involved in leaf growth and development; the csn-miR319-2/csnTCP2 and miR159-csnMYB modules were found to be involved in leaf development in XYMJ green tea. Quantitative real-time PCR was used to validate the expression levels of the miRNAs and mRNAs. The miRNAs and target genes identified in this study might shed new light on the molecular mechanisms underlying the regulation of leaf development in tea plants.

20.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686248

RESUMO

Cell division plays an indispensable role in leaf morphogenesis, which is regulated via the complexes formed by cyclin and cyclin-dependent kinase (CDK). In this study, gene family analysis, exogenous auxin stimulation, RNA-seq and WGCNA analysis were all used to investigate the molecular mechanisms by which cell-cycle-related factors participated in the auxin signaling pathway on leaf morphogenesis. Sixty-three cyclin members and seventeen CDK members in Populus alba were identified and systematically analyzed. During the evolution, WGD was the main reason that resulted in the expansion of cyclin and CDK genes. Firstly, after a short time treating with auxin to matured leaves of seedlings, genes related to cell division including GRF and ARGOS were both upregulated to restart the transition of cells from G1-to-S phase. Secondly, with three days of continuous auxin stimulation to leaves at different developmental stages, leaves area variation, transcriptomes and hormones were analyzed. By PCA, PCoA and WGCNA analyses, the turquoise module was both positively related to leaf development and auxin. Based on the co-expression analysis and Y2H experiment, PoalbCYCD1;4, PoalbCYCD3;3 and PoalbCYCD3;5 were supposed to interact with PoalbCDKA;1, which could be the trigger to promote the G1-to-S phase transition. The ARF transcription factor might play the key role of connecting the auxin signaling pathway and cell division in leaf morphogenesis by affecting CYC-CDK complexes.


Assuntos
Populus , Populus/genética , Ciclinas , Quinases Ciclina-Dependentes/genética , Ácidos Indolacéticos , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...